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Hydrogenases catalyze the formation and oxidation gfard,

as such, are technologically interesting because they utilize base

metals and operate at extraordinarily high r&tedf the two

structurally characterized classes of hydrogenases, the Fe-only

hydrogenases (Feblses) have received intense scrutiny with a
focus on both functional and structural modelffgDirect insight
into the key H-forming or the H-binding steps is still lacking,
however.

Two functional states of the active site in the Fgasks have
been characterized (Figure 1). Thedtate 6= /) is very likely
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Figure 1.

[Fer(I)Fed(1)],> where Fé and Fé refer to the Fe center proximal
and distal to the attached [4FdS] cluster, respectively. TheHd
state is diamagnetic, which is consistent with either of two low-
spin descriptions: [Fe(ll)Fe(ll)] or antiferromagnetically coupled
(or Fe—Fe bonded) [Fe(l)Fe(l)]. One structural difference between

Figure 2. Molecular structure of the monocations in pfet)u-H)(CO),-
(PMe;)4]PFs ([1H]PF) (top) and [Fe(edt)-CO)(H)(CO)(PMe)4]PFs (a-
[1H]PFs) (bottom). Displacement ellipsoids are drawn at the 50% probability

these two functional states is the presence of a symmetrically level. All hydrogen atoms, except the bridging or terminal hydride H(1),

bridging (H,) or sembridging (Heg CO ligand® A second
difference is that the axial site on s either vacant or occupied
by a light atom, such as H in k4, whereas HO appears to bind at
the same site in §.”

Synthetic models of the type [HE&R)(«-H)L(CO))? produce
H, by electrocatalytic reduction of protons €€ CN-, PMe3).8 Such
Fe(u-H) species, however, exhibit no inherent reactivity toward
protons. Biophysical studies strongly implicate a role for a hydride
at the axial site on Pesuch terminal hydrides are expected to be
more hydridic than the isomeric bridging hydridésDiferrous
species bearing a terminal hydride ligand are unknown, until this
reporti!

The present study was enabled by our recent synthesis of

diferrous dithiolato complexes of the type F®,CnH2)(1-CO)-
(COX«(PRs)x(NCMe)J?*, which contain one substitutionally labile
terminal site trans to the FeFe bond? To simplify the spectros-
copy, we employ ethanedithiolate,(SH42~, ed€~) in place of the
propane- or azadithiolate cofactor proposed for the enzyme.
Low-temperature reaction of an MeCN solution of jealt) (-
CO)(CO)(PMg)4s(NCMe)](PF)2, [L(NCMe)](PFs)2, with LiAIH 4 or
NaBH, efficiently afforded red [Fgedt){-H)(COx(PMes)q]™*
([1H]™), as confirmed by IR and NMR spectroscopy. For example,
theH NMR spectrum exhibited a triplet-of-triplets ét-20.6 Jp-n
= 28, 5 Hz)*® Dark-green [Fgedt)u-CO)(CO}(PMes)s(NCMe)]-
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are omitted for clarity. J[H]PFs selected bond lengths (A): Fe{fe(2)
2.6102(8); Fe(kyP(1) 2.2330(11); Fe(¥)P(4) 2.2357(12); Fe(HP(3)

2.2282(11); Fe(tyH(1) 1.65(3); Fe(2yH(1) 1.61(2); Fe(1}yC(1) 1.738-
(3); Fe(2)-C(2) 1.754(3); C(130O(1) 1.160(3). Angles®): Fe(2y-Fe(1)>

H(1) 36.1(9); Fe(1yFe(2)-H(1) 37.3(9); P(1}Fe(1)y-H(1) 87.5(9); P(3)

Fe(2)-H(1) 171.8(9); Fe(2yFe(1)}-P(1) 109.51(3); Fe(¥)Fe(2)-P(3)
146.69(3); Fe(£yC(1)-0O(1) 176.3(3); Fe(2yC(2)—0(2) 178.0(3)o-[1H]-

PFs selected bond lengths (A): Fe(Fe(2) 2.5666(7); Fe(BC(1) 2.443-
(4); Fe(2y-C(1) 1.771(4); Fe(1yC(2) 1.748(4); Fe(yP(1) 2.2129(11);
Fe(1)-P(4) 2.2627(11); Fe(2)P(2) 2.2043(13); Fe()P(3) 2.2173(11);
C(1)-0(1) 1.176(4); C(2yO(2) 1.163(4); Fe(2yH(1) 1.52(4). Angles
(°): Fe(2)-Fe(1)-C(1) 41.31(10); Fe(yFe(2)-C(1) 65.61(12); Fe(ty

C(1-0(1) 123.2(3); Fe(2)C(1)-0O(1) 163.3(3); P(X)yFe(1)-C(1) 168.99-
(10); P(3)y-Fe(2)-C(1) 84.66(12); Fe(2yFe(1)-P(1) 147.49(4); Fe(t)

Fe(2)-P(3) 118.31(4); H(1yFe(2)-C(1) 162.4(14).

(PR)2 ([2(NCMe)](PFRs).) reacted with LiAlH, to give the analogous

hydride, red-colored [F€edt)(«-H)(CO)x(PMes)s]PFs ([2H]PFs).

The IH NMR spectrum of 2H]PF; indicated both minor-{15%,

0 —15.6, dt) and major isomer8 ¢18.4, ddd). Previously, diferrous

hydrides were only accessible via protonation of the-Fe bond

in the corresponding dillferrous Fg(SR)L(CO), species.
Crystallographic analyses corroborated the molecular structures

of C,-symmetric [H]PF;s (Figure 2) and the major isomer &Hl]-

PFs (not shown). The stereochemistry in eachl derivative differs

subtly yet significantly from its precurséf;one basal PMgigand

10.1021/ja055475a CCC: $30.25 © 2005 American Chemical Society
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has migrated to the axial position, ostensibly by the migration of a
u-CO ligand, which in turn is displaced by “H.

The low-temperature—{25 °C) reaction of LiAlH, or NaBH,
with [1(NCMe)?* in CD5CN solution revealed a green intermediate,
which formed concomitantly with the appearance of free;CNI
(Scheme 1). This intermediate{1H] ") exhibited a doublet-of-
doublets pattern at —4.6 in the 'H NMR spectrum. Low-
temperaturé'’P—H HMQC 2D NMR measurements established
that this hydride signal is coupled to only two phosphine ligands,
atd 35.6 Jp—y = 50 Hz) and 21.5Jp_4 = 96 Hz). Using LiAID,,
we prepared-[1D]*; selective’’P{*H} —2H coupling was observed
for these two signals, and no hydride signal was found inthe
NMR spectrum. The FeH(D) signals were unaffected by.8
(D0).

The IR spectrum ofx-[1H]" featuredvco bands at 1940 and
1874 cml, indicative of both terminal and bridging CO ligands,
as well as a weak band at 1844 Thnattributable toveen (Figure
3). Fora-[1D] ™, thevco bands appeared at 1940 and 1863 €M
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Figure 3. FT-IR spectra (MeCN solution) ofl{NCMe)](PFs)2 (black),
[1H]PFs (red), a-[1H]PFs (green), andx-[1D]PFs (blue).

Collectively, the spectroscopic observations support assignment of

o-[1H]* as the diferrous terminal hydride [fedt)-CO)(H)(CO)-
(PMe&3)4] . No terminal hydrido intermediate was observed in the
reaction of LiAlH, with [2(NCMe)](PF)2; [2H]PFs formed rapidly
even at—25 °C. This result shows that the coligands on the second
(proximal, see Figure 1) iron center influence the barrier for the
terminal-to-bridging hydride isomerization.

Crystallographic analysis af-[1H]PFs (Figure 2) revealed two

independent molecules in the asymmetric unit, each with indepen-

dently refined terminal hydride ligands. The combination of the
terminal hydride, its location trans to the +Ee vector, and the
sembridging CO ligand match well with the crystallographic data
for the Heq form of the enzyme fronD. desulfuricans The Fe-
(1)—C(1) and Fe(2rC(1) distances of 2.443(4) and 1.771(4) A,

respectively, compare favorably with the corresponding distances
of 2.40 and 1.69 A found for the protefn.

The isomerization ofx-[1H]* to [1H]* was monitored byH
NMR spectroscopy; the process is first orderdaalH] *, with k =
2 x 10 st (21 °C). Other observations indicate that the
rearrangement is intramolecular: (i) the rate was unaffected,by H
or PMe (1 equiv); and (ii) isomerization af-[1H]PFs into [1H]-

PF; also occurred in microcrystalline samples, requiring32lays
at room temperature.

Highly relevant to the catalytic function of the Fe-only hydro-
genases active site, GOI, solutions ofo-[1H]PFs react at—20
°C (at which temperature the isomerization is slow) with HOTf or
H(OEb),BArF, to give H, as confirmed by théH NMR signal at
0 4.60. When protonolysis was conducted in the presence of small
amounts of MeCN, I(NCMe)]PF; is regenerated (Scheme 1).
Control experiments showed that the corresponding bridging hydride
[1H]* is unreactive toward these same acids. Mechanistic studies
of the hydrogenogenesis reaction are ongoing.

In summary, reduction of diferrous dithiolates with hydride
reagents provides a fresh approach to an active site model for a
critically important intermediate. The terminal hydride indeed reacts
with Brgnsted acids to give #lin contrast to theorreactivity of
the isomeriqi-H compounds. The new synthetic methodology could
be applicable to other diferrous dithiolates, including those bearing
cyanide ligands.
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